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1 Lipschitz Continuity of Convex Functions
Let X ⊆ Rn be convex. Recall that f : X → R is said to be convex if and only if

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for any x, y ∈ X and λ ∈ (0, 1).

Remarks. Let X ⊆ Rn be convex and f : X → R be a function. We extend the definition of f(·) on
Rn by

f̄(x) :=

{
f(x) , x ∈ X

+∞ , x ̸∈ X

Then f is convex on X if and only if f̄ is convex on Rn.

We usually consider a function f : Rn → R ∪ {+∞} and its domain as:

dom(f) := {x ∈ Rn : f(x) ∈ R}

Remarks. If f is convex on Rn, then dom(f) ⊆ Rn is convex.

Lemma 1. Let f be convex and x0 ∈ int domf . Then f is locally bounded, i.e. ∃ε > 0 and C > 0
such that

|f(x)| ≤ C, ∀x ∈ Bε(x0) := {x′ ∈ Rn : ∥x′ − x0∥2 ≤ ε}.

Remarks. Recall the ℓ2-norm and ℓ∞ sup-norm as follows: ∥x∥2 :=

√√√√ n∑
i=1

x2
i and ∥x∥∞ := max

1≤i≤n
|xi|.

Proof. Let us define the hypercube as

Hε(x0) := {x′ ∈ Rn : ∥x′ − x0∥∞ ≤ ε}

Then, we can see Bε(x0) ⊆ Hε(x0). This implies that

sup
x∈Bε(x0)

|f(x)| ≤ sup
x∈Hε(x0)

|f(x)|

≤ max
e∈E

|f(x0 ± εe)| := C

where e = (±1,±1, · · · ,±1) and C < +∞ for ε > 0 is small enough since Hε(x0) ⊆ int dom(f).

Lemma 2. Let f be convex and x0 ∈ int dom(f). Then there exists ε > 0, C̃ > 0 such that

|f(x)− f(y)|
∥x− y∥

≤ C̃

for all x, y ∈ Bε(x0) and x ̸= y.
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Proof. Since x0 ∈ int dom(f), then by the previous lemma, there exists ε > 0 and C > 0 such that
B2ε(x0) ⊆ int dom(f) and |f(x)| ≤ C for all x ∈ B2ε(x0).
Next, let z be the intersection of the line x → y and ∂B2ε(x0).
Then, it is clear that ∥x− y∥2 ≤ 2ε, ∥y − z∥ ≥ ε, ∥z − x∥ ≥ ε and

y = αz + (1− α)x

with α :=
∥y − x∥
∥z − x∥

∈ (0, 1). By the convexity of f , we have

f(y) ≤ αf(z) + (1− α)f(x)

=⇒ f(y)− f(z) ≤ α (f(z)− f(x))

=
∥y − x∥
∥z − x∥

(f(z)− f(x))

=⇒ f(y)− f(z)

∥y − x∥
≤ f(z)− f(x)

∥z − x∥
≤ 2C

ε

By symmetry, we also have

f(x)− f(y) ≤ 2C

ε
∥x− y∥ =⇒ |f(x)− f(y)

∥x− y∥
≤ 2C

ε
:= C̃

and thus completes the proof.

Theorem 3. Let f be convex and K ⊆ int dom(f) be closed and bounded set. Then f is uniformly
bounded on K, and f is Lipschitz on K.

Proof. Since K is compact, and {Bε(x0)(x0) : x0 ∈ K} is an open cover of K, then there exist a finite
subcover Bεi(xi), i = 1, . . . ,m by the compactness of K.
Since |f(x)| ≤ Ci for all x ∈ Bεi(xi), so this implies that |f(x)| ≤ max

i=1,...,m
Ci, this shows that f is

uniformly bounded on K.
Similarly, we can prove the Lipschitz property of f on K by applying the previous lemma.

2 Example
Example 1. All three assumptions on K, i.e. closedness, boundedness and K ⊂ int dom(f) are
essential, we can see from the following examples:

1. Consider the function

f(x) =


x2 , x ∈ (−1, 1)

2 , x = ±1

+∞ , x ̸∈ [−1, 1]

with dom(f) = [−1, 1] and it is a convex function. Then f is Lipschitz on (−1, 1) = int dom(f).
However, f is not Lipschitz on [−1, 1].

2. Consider the function

f(x) =


1

x
, x > 0

+∞ , x ≤ 0

f is convex function since f ′′(x) = 2x−3 > 0 for any x ∈ dom(f) = (0,+∞) .
f is not uniformly bounded on int dom(f) and not Lipschitz on int dom(f).
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3. Consider the function f(x) = x2 and dom(f) = R.
f is not uniformly bounded on R and not Lipschitz on R since R is not bounded.

4. Consider the function

f(x) =

{
−
√
x , x ≥ 0

+∞ , x < 0

with dom(f) = [0,+∞) and int dom(f) = (0,+∞).
K = [0, 1] is bounded and closed, but f is not Lipschitz on K since K ̸⊂ int dom(f).

Recall: Subgradient
Definition 1. Let X be a convex set and f : X → R be a function. A vector w ∈ Rn is called a
subgradient of f at point x ∈ X if

f(y) ≥ f(x) + wT (y − x), ∀y ∈ X

We denote ∂f(x) = {all subgradient of f at x}.

Let f be a convex function and ∂f(x) ̸= ∅ for all x ∈ ri dom(f).

Lemma 4. The following statements hold for a convex function f .

1. Let x0 ∈ int dom(f) so that f is locally Lipschitz in the sense that ∃ε > 0, C̃ > 0 such that

|f(x)− f(y)| ≤ C̃∥x− y∥, ∀x, y ∈ Bε(x0)

Then ∥v∥ ≤ C̃ for all v ∈ ∂f(x), ∀x ∈ Bε(x0).

2. Let v ∈ ∂f(x) and x ∈ dom(f) such that ∥v∥ ≤ C, then

f(x)− f(y) = ⟨v, x− y⟩ ≤ C∥x− y∥

for any y ∈ dom(f).

Proof. 1. For δ > 0 small enough, we put y = x+ δv′ ∈ Bε(x0), then we compute

δ∥v∥2 = ⟨v, y − x⟩ ≤ f(y)− f(x) ≤ C̃∥y − x∥ = C̃δ∥v∥

Dividing both sides by δ∥v∥ and get ∥v∥ ≤ C̃ for all v ∈ ∂f(x), x ∈ Bε(x0).

2. Since v ∈ ∂f(x), by definition, we have

f(y)− f(x) ≥ ⟨v, y − x⟩ , ∀y ∈ dom(f)

Multiplying −1 on both sides yields

f(x)− f(y) ≤ ⟨v, x− y⟩ ≤ ∥v∥∥x− y∥ ≤ C∥x− y∥

for any y ∈ dom(f).

Remarks. Let f be convex and differentiable at x ∈ int dom(f). Then

f ((1− λ)x+ λy) ≤ λf(y) + (1− λ)f(x).

Simply rewrite the above as

f(y) ≥ 1

λ
[f ((1− λ)x+ λy)− (1− λ)f(x)]

= f(x) +
1

λ
[f ((1− λ)x+ λy)− f(x)]

Taking limit λ → 0, we have ∇f(x) ∈ ∂f(x).
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Below, we provide some basic subgradient calculus for convex functions. Observe that many of
them mimic the calculus for gradient computation.

1. Scaling: ∂(af) = a∂f provided that a > 0.
The condition a > 0 makes function f remain convex.

2. Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2), where f1, f2 are convex functions.

Proof. 1. Trivial.

2. We only show one direction proof.
Let v1 ∈ ∂f1(x) and v2 ∈ ∂f2(x), then{

f1(y) ≥ f1(x) + ⟨v1, y − x⟩
f2(y) ≥ f2(x) + ⟨v2, y − x⟩

Summing these two inequalities implies

(f1 + f2)(y) ≥ (f1 + f2)(x) + ⟨v1 + v2, y − x⟩

Therefore, we have ∂(f1) + ∂(f2) ⊆ ∂(f1 + f2).

— End of Lecture 13 —
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