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1 Lipschitz Continuity of Convex Functions

Let X C R" be convex. Recall that f : X — R is said to be convex if and only if

FOz+(1=Ny) <Af(x)+ (1= f(y)

forany z,y € X and \ € (0,1).
Remarks. Let X C R" be convex and f : X — R be a function. We extend the definition of f(-) on

R" by
2 Jfl@) jreX
fio = {10 2

Then f is convex on X if and only if f is convex on R".

We usually consider a function f : R" — R U {+oc} and its domain as:
dom(f) :={z e R": f(z) € R}
Remarks. If f is convex on R", then dom(f) C R" is convex.

Lemma 1. Let f be convex and xy € int domf. Then f is locally bounded, i.e. 3¢ > 0 and C' > 0
such that
(@) < C, Vo € Bu(wo) = {a' €R": [/ — ol < e}

n
Remarks. Recall the /5-norm and £, sup-norm as follows: ||x||s := Z z? and || 7)o = max | ;).
<i<n

i=1

Proof. Let us define the hypercube as
H.(zg) :={2' e R": ||2' — 2|l < €}
Then, we can see B.(x¢) C H.(z). This implies that

sup |f(z)] < sup |f(z)|
z€B:(x0) x€H:(x0)

< =
< max |f(zo £ ee) := C

where e = (£1,+1,--- ,£1) and C < +oo for € > 0 is small enough since H.(zo) C int dom(f).
O

Lemma 2. Let f be convex and x € int dom(f). Then there exists ¢ > 0, C' > 0 such that

@) = f) _ 4
o=yl =

forall x,y € B.(xo) and x # y.
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Proof. Since z € int dom(f), then by the previous lemma, there exists € > 0 and C' > 0 such that
Boc(zo) C int dom(f) and |f(z)| < C for all x € By (zp).

Next, let z be the intersection of the line x — y and 0 Ba. (o).

Then, it is clear that ||z — y||s < 2¢, ||y — z|| > &, ||z — z|| > € and

y=az+ (1 —-a)x

|y — 2]

with a := 2= 2] € (0,1). By the convexity of f, we have
fly) < af(z) + (1 —a)f(z)
= fly) = f(z) <a(f(z) = f(2))

<
<
— P22 - Fo)
) = 1) _ fG)— ) _2C

— < <
ly — = Iz — =] 2
By symmetry, we also have
2C flx)— f(y 2C ~
Fo) — ) < E ey = HDZTW 20 g
lz =yl €
and thus completes the proof. [

Theorem 3. Let f be convex and K C int dom(f) be closed and bounded set. Then [ is uniformly
bounded on K, and f is Lipschitz on K.

Proof. Since K is compact, and { B, (,,) (o) : o € K} is an open cover of K, then there exist a finite

subcover B, (x;), i =1, ..., m by the compactness of K.

Since |f(z)| < C; for all z € B.,(z;), so this implies that | f(x)| < max C;, this shows that f is
uniformly bounded on K. -

Similarly, we can prove the Lipschitz property of f on K by applying the previous lemma. U

2 Example

Example 1. All three assumptions on K, i.e. closedness, boundedness and K C int dom(f) are
essential, we can see from the following examples:

1. Consider the function

22 we(-1,1)
, T ==1
+oo , x & [-1,1]

with dom(f) = [—1, 1] and it is a convex function. Then f is Lipschitzon (—1,1) = int dom(f).
However, f is not Lipschitz on [—1, 1].

=

&
I
[\

2. Consider the function

1

— , x>0
flz) =<

400 , <0

f is convex function since f”(z) = 227% > 0 for any z € dom(f) = (0, +00) .
f is not uniformly bounded on int dom( f) and not Lipschitz on int dom( f).

2 Prepared by Max Shung



3. Consider the function f(x) = 2% and dom(f) = R.
f is not uniformly bounded on R and not Lipschitz on R since R is not bounded.

4. Consider the function
, x>0

—Va
-
400 , <0
with dom(f) = [0, +00) and int dom(f) = (0, +0o0).

K =0, 1] is bounded and closed, but f is not Lipschitz on K since K ¢ int dom(f).

Recall: Subgradient

Definition 1. Let X be a convex set and f : X — R be a function. A vector w € R" is called a
subgradient of f at point x € X if

fy) = flz) +w'(y— =), VyeX
We denote 0f(x) = {all subgradient of f atx}.
Let f be a convex function and 0 f () # () for all z € ri dom(f).
Lemma 4. The following statements hold for a convex function f.

1. Let xy € int dom(f) so that f is locally Lipschitz in the sense that 3¢ > 0, C > 0 such that

(@) = f(y)] < Cllz —yll, Va,y € B(xo)
Then ||v|| < C forall v € df (z), Vx € B.(xo).

2. Letv € 0f(x) and x € dom(f) such that ||v|| < C, then
f@) = fy) = v,z —y) <Cllz—y|

for any y € dom(f).
Proof. 1. For § > 0 small enough, we put y = x + dv’ € B.(zy), then we compute

Olv]l> = (v,y — x) < fly) — flx) < Clly — x| = Cojo]
Dividing both sides by d||v|| and get ||v|| < C forall v € df (), z € B.(zo).
2. Since v € Jf(x), by definition, we have

Multiplying —1 on both sides yields

f(@) = fly) < v,z —y) <|ofllle =yl < Cllz =y

for any y € dom(f).

Remarks. Let f be convex and differentiable at 2 € int dom(f). Then
S =Nz +xy) <Af(y) + (1= A f(2).

Simply rewrite the above as

3 (= Nz 4+ Ay) = (1 =X f(2)]

= f(@)+ 5 [f (L= Nz +y) — f(x)]
)
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Below, we provide some basic subgradient calculus for convex functions. Observe that many of
them mimic the calculus for gradient computation.

1. Scaling: d(af) = adf provided that a > 0.
The condition @ > 0 makes function f remain convex.

2. Addition: O(f, + fo) = O(f1) + O(f2), where fi, f, are convex functions.
Proof. 1. Trivial.

2. We only show one direction proof.
Let v; € df1(z) and vy € O fs(x), then

fa(y) = fo(x) + (v2,y — @)

Summing these two inequalities implies

fily) > fi(x) + (v, y — x)
> fa(x) +

(fi+ f2)) = (fi + f2)(@) + (v1 + v2,y — 7)

Therefore, we have O(f1) + 0(f2) C O(f1 + fa).

— End of Lecture 13 —
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